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The difficult problem of decoupling the Green functions of a Heisenberg ferromagnet is approached from 
an ad hoc point of view. As indicated by Wortis, the Green functions pertaining to spin problems do not obey 
a simple Dyson equation; the higher order Green function is proportional to the lower order Green function 
(the proportionality factor being the "mass operator") plus an anomalous additive term. The forms of both 
the mass operator and the anomalous term are here evaluated by requiring agreement of the theory with 
rigorous results known from low-temperature and high-temperature expansions. The mass operator is found 
to be almost precisely that proposed by Callen on heuristic grounds. At low temperatures, the anomalous 
term makes a particularly significant correction to the results for spin §, but becomes relatively unimportant 
for higher spins. Near the Curie temperature, however, the contribution of the anomalous term is important 
even for larger spin values. The resultant theory agrees with the Curie temperature estimates of Rushbrooke 
and Wood or Domb and Sykes to within about 1%. In addition to the imposed agreement with the same 
authors to order (TC/T)A at high temperatures and with Dyson to order (T/Tc)* at low temperatures, the 
estimates of the critical value of the magnetic energy are also in close agreement with those of Domb and 
Sykes. The critical behavior of the susceptibility, as T approaches Tc from above, and of the magnetization, 
as T approaches Tc from below, is investigated. It is found that within the random phase and the Callen 
approximations, the susceptibility obeys a relation of the form x = const (1 — TC/T)~2, whereas the mag­
netization approaches zero as (1 — T/Tc)

112. However, when the anomalous term is taken into account 
consistently, the theory predicts that if the susceptibility is set to agree with Domb and Sykes' result, 
X = const (1 — Tc/T)~Alz, the magnetization below the Curie point would approach zero as (1 — T/Tc)

llz. 

1. INTRODUCTION 

THE problem of determining the thermodynamics 
of a Heisenberg ferromagnet, as a function of the 

temperature and the magnetic field, has been rigorously 
studied in the low-temperature region1-5 where a series 
expansion in powers of T/Tc (where Tc is the Curie 
temperature) is valid. Similarly, at high temperatures 
the thermodynamic perturbation theory6-9 has been 
used to evaluate the free energy as a power expansion 
in Tc/T. These methods, however, are applicable only 
far from the transition region and therefore approxi­
mate theories, such as the Weiss molecular field10 theory 
and the various cluster theories,11-16 have been proposed 
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which give qualitatively good results near and beyond 
the transition temperature. The Curie temperatures can 
also be estimated from these methods. The best esti­
mates, however, are obtained by extrapolating the 
high-temperature results to the transition region.6"9 

All these methods suffer from the drawback that their 
applicability is limited to a particular range of tem­
peratures. 

Recently, the technique of double time-temperature-
dependent Green functions17-22 has been successfully 
applied to the ferromagnetic problem. The virtue of this 
method is that it provides the temperature and the 
magnetic field dependence of the magnetization over the 
entire temperature range with reasonable accuracy. 
Furthermore, the Curie temperatures provided by this 
theory seem to be in close agreement with the best 
estimates to date (compare Refs. 8 and 21). However, 
these approximate Green function theories suffer from 
the weakness that they lack a detailed agreement with 
the exact low-temperature and the high-temperature 
expansions. For example, the low-temperature result for 
the magnetization differs from the spin-wave theory 
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result in the order (T/Te)
z. Similarly, at high tempera­

tures, the susceptibility disagrees with the exact result 
in the order (Tc/T)3. 

The problem of improving on the Bogolyubov and 
Tyablikov,17-18 and Tahir-Kheli and ter Haar,21 ap­
proximation has recently been studied by Callen.23 In 
his method the higher order Green functions, occurring 
in the equations of motion of the Green functions of the 
spin operators, are decoupled by a plausible physical 
criterion. Callen's ingenious approximation consists es­
sentially in taking into account the fluctuations of the 
operator Sg

z, i.e., the z component of the spin operator 
referred to lattice site g, around its statistical average 
(Sz). These fluctuations were neglected in the earlier 
work. Callen's theory successfully predicts the correct 
spin-wave energies at low temperatures and also leads to 
an accurate estimate of the Curie temperatures in the 
limit of large spin values. For low spins, however, the 
results are less accurate and for the particular case of 
S=\ the expression for the low-temperature magnetiza­
tion is still found to contain the anomalous (T/Tc)

z 

term. 

At high temperatures, Callen's theory behaves rather 
similarly to the random-phase theory,24 and the sus­
ceptibility agrees with the exact results up to order 
(Tc/T)\ 

From a formal point of view both the random-phase 
approximation21 and the Callen approximation23 assume 
that the spin Green function obeys the Dyson equation; 
the higher order Green function being written as a 
product of a mass operator and a lower order Green 
function. These theories differ in the form that they 
postulate for the mass operator. 

In a recent study of the problem, Wortis5 has shown 
that the Green functions of a Heisenberg ferromagnet, 
in common with those pertaining to condensed Bose 
systems,25 do not obey a Dyson equation with a simple 
mass operator; alternatively, if an "effective-mass 
operator" is defined by a Dyson equation, it is found to 
possess an anomalous structure. I t is our purpose here 
to investigate the form of the effective mass operator. 
We find that a particularly convenient representation of 
the "effective-mass operator" is such that the higher 
order Green function is the sum of an anomalous addi­
tive term plus the product of a simple mass operator and 
a lower order Green function. Knowing the detailed 
form of the spin-wave dispersion law,4,26-27 and keeping 
in mind the results of the RPA21 and the Callen theory,23 

we infer the form of the anomalous term and of the 
remaining mass operator. Similarly, at high tempera-
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tures, we invoke the series expansions for the sus­
ceptibility and the magnetic energy, derived by Rush-
brooke and Wood,8 and Domb and Sykes.9 

We find that the mass operator is almost exactly that 
proposed by Callen.23 At low temperatures, the anoma­
lous term is quite important for spin J, but it becomes 
insignificant for higher spins. Again, at high tempera­
tures, we find that the anomalous term contributes only 
weakly, i.e., in the order (TC/T)A, to the susceptibility 
and is less important the larger the spin S. Near the 
Curie point, however, the anomalous term makes a 
significant contribution even for moderately large S, 
i.e., S~ 10. For 5 ^ 1 , the anomalous term is again small 
and our results are identical with those of Callen.23 

The Green function theory here obtained provides an 
interpolation scheme between high and low tempera­
tures. The results for the Curie temperatures and the 
critical magnetic energy agree with the estimates of 
Domb and Sykes and Rushbrooke and Wood to about 
1% for all spins. The critical behavior of the sus­
ceptibility, as T approaches Tc from above, and of the 
magnetization, as T approaches Tc from below, is in­
vestigated. I t is found that within the Callen23 and 
the random-phase approximations,21 the susceptibil­
ity just above the Curie temperature has a form 
X=const (1 — TC/T)~~2, whereas the magnetization just 
below the Curie temperature approaches zero as 
(1 — T/Tc)

1/2. The present theory, however, can be set 
to achieve agreement of % with the high-tempera­
ture series result of Domb and Sykes, i.e., X=const 
X (1 — Tc/T)~i/3. If this is done we find that just below 
the Curie temperature the magnetization, M(T), obeys 
a relation of the form M{T) = const(l-T/Tc)1**. 

2. THE GREEN FUNCTION 

The mathematics of the retarded and advanced 
double time-temperature-dependent Green functions 
has been given by Zubarev,19 and by Bonch-Bruevich 
and Tyablikov20 to whom we refer for details. We outline 
here those features of this technique which are relevant 
to the present work. 

The Green function of operators A and B, 
((A ( 0 ; B (?))), is defined as follows: 

((A (/); £ ( / ' ) » r e t - - ~ e ( / - / ' ) < D 4 (0,2* «')]-> > 
n 

(2.1) 

((A (t); B ( * ' ) » a d ^ + - 6 « ' - t)([_A (t),B (*')]->, 

where A (t) is the Heisenberg operator referred to time /, 
i.e., 

i ( 0 = ^ ™ y r « S (2.2) 

where H is the system Hamiltonian, 2irh the Planck 
constant, A the Schrodinger (time-independent) oper­
ator, square brackets denote a commutator, and single 
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angular brackets denote an ensemble average 

<• • - ^ T r O T * * - • - ) / T r ( r * * ) . (2.3) 

®(x) is the step function 

®(a) = l , x>0 
= 0, x<0, (2.4) 

and p=i/kBT (&#, Boltzmann's constant; T, absolute 
temperature). Differentiating the Green functions given 
in (2.1) with respect to t we get 

ih-{(A 0); B(t')))=Ht-t')(LA (t)Mt)V> 
dl 

+((LA(t),ET\-;B(t'))), (2.5) 

where 8(- • •) denotes the Dirac delta function and the 
superscripts ret and adv have been dropped because 
(2.5) is the same for either of the two cases. The Green 
function ({[A(t),H']' B(t'))), m general, involves Green 
functions of higher order than the original ({̂ 4 (t); B (tf))), 
except, of course, for the trivial cases of noninteracting 
systems where exact solutions can be obtained. One has 
therefore to linearize the equation (2.5) by a suitable 
decoupling approximation. Once (2.5) has been solved 
for ((A(t);B(tf))), the spectral theorems19-20 may be 
invoked to get the time-correlation functions, 

(B(f)A(t)) 

i f+°°l((A;B)}s+it-((A;B))^it-] 
= lim 

» » ; _ 

= {A{t)B(f+ih0)), (2.6) 

where {{A ; B))(E) denotes the energy Fourier transform 
of ((A (t); B(/))). Equations (2.5) and (2.6) are the only 
two equations required for our calculations here. 

3. CORRELATION FUNCTION OF THE TRANSVERSE 
COMPONENTS OF SPINS 

We shall assume the ferromagnetic spin system to be 
described by a Heisenberg-type interaction with iso­
tropic exchange and in the presence of a spatially 
homogeneous time-independent magnetic field, B, di­
rected along the positive z axis. The Hamiltonian H 
therefore is 

EQ 
H= E Siz~ E / ( f -m)S f • Sm, (3.1) 

fl i f,m 

where E0— + y B / 5 , M is the magnetic moment per ion, 
Six>y'z the Cartesian components of the spin operator 
for the site f, and I{i—m) the exchange integral be­
tween ions at sites f and m. As usual, we assume that the 
self-exchange terms vanish, i.e., 7(f—f)~ 0. We shall 
consider here the following Green functions: 

G„i<«>(*-O^«S«+(0; C,<»>(0», (3.2) 

where 

and 
Sg**** Sg*±iSg* (3.3) 

C i ^ > ( 0 = [ 5 i ' ( 0 ] t t 5 r ( 0 , (3.4) 

where n is a positive integer or zero. 
From Eqs. (2.5) and (3.1) we find the equation of 

motion of Gg;i
(n)(/—0> 

ifi EQ 

. dt 
\Gg.A^{t-t') 

= «(*-Oe(tt)5g,i+2ft£/(g-f) 
f 

X«5,«(05f+(0-5g»«)5,+(0;Ci(->«')»,. (3.5) 

where 

XLS(S+l)ti2+tiSg*-(Sg*)2~]+2(Sg*)n+1ti). (3.6) 

In order to solve Eq. (3.5) for the Green function G(n\ 
it must first be linearized. The simplest approximation 
for this purpose is the RPA18-21'24 which neglects the 
dynamical correlations between Sg

z(t) [[or Sfz(t)~] and 
the remaining operators and replaces it by the statistical 
average (Sz). In order to take into account the fluctua­
tions of Sg

z around its average (Sz), Callen23 has recently 
suggested a decoupling scheme of the following type: 

ft«5B'(05f+(0; Ci<*>(0»—-^ft<5«>Gf:i^(/-0 
Callen 

-a-(StS(+)Gg;lM(t-t'). (3.7) 

Callen chooses a on the grounds that since the random-
phase approximation, represented here by the choice 
a = 0, affords a reasonable first approximation, the 
additional part Sg

z—{SZ) introduced here must be self-
consistently small at all temperatures. This requirement 
can be satisfied if a = 1/25 at low temperatures and if a 
decreases at least as fast as (Sz) at high temperatures. 
Callen's choice of a — {Sz)/2S2 incorporates both these 
features. 

In order to look for an improvement over these ap­
proximations, we proceed as follows. Rather than 
decouple the Green functions {{Sg

z(t)Si+(t)]C{n){t'))) 
and {{Siz(t)Sg+(t); Ci (w)(0)> separately, we notice that 
in Eq. (3.5) the relevant expression, jP(n), to be de­
coupled is a function of the difference of these Green 
functions, i.e., 

F ^ > s 2 f t E , / ( g - f ) 

x{(st'(t)sg+(t)-sg<(t)StHt); Ci<»>(0». (3-8a) 

Because of the translational and the time invariance 
of the Hamiltonian and the translational invariance of 
the lattice, F(n) must be a function of the vector spatial 
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separation (g— 1) and the time difference (t—tf), i.e., 

JF<»>=F<»>(g-l ; / -0 . (3.8b) 

In the RPA the function F(n) takes the following simple 
form21 

F<->(g-l; / - / ' ) —> 2*<5«>E Hi-i) 
RPA £ 

X [ G B ; i < « ) ( / - 0 - G f ; i ^ ( / - 0 ] . (3.9) 

In view of the fact that the RPA constitutes a reason­
able first approximation, we propose to investigate a 
decoupling scheme of the form 

jp(w)/g_j. l—lf\ 

= 2*<5 '>Ef/ (g~f)CG g : 1 <»)( / -0-G f ; 1 <»)(^-0] 
+ A ^ ( g - 1 ; / - / ' ) , (3.10) 

where A(n) represents the corrections to the RPA. 
Introducing (3.10) into (3.5) we get the equation of 

motion in the following form 

r d 
ifi Eo 

dt 

Gg;l^(t-t')-A^(g-l;t-t') 

= 5(/-/05g,i<3(n) + 2^(^) 

X L / ( g - f ) [ G g ; 1 ^ ) ( / - 0 ~ G f ; 1 ( ^ ( / - 0 ] . (3.H) 
f 

The translational invariance dictates Fourier trans­
formation with respect to the inverse lattice, i.e., 

1 
G B i ( B ) ( ^ 0 — E G k w ( / - ^ k ' ( H ) , (3.12) 

N k 

A ( n ) ( g - l ; / - / ' ) = - E A W ( k ; / - V k , ( H ) , (3.13) 
N k 

1 

N k 
(3.14) 

where N is the total number of sites in the lattice and 
the inverse lattice sums are restricted to the first 
Brillouin zone. Fourier transformation with respect to 
the energy E is also possible, i.e., 

1 r+cc 

Gk(n)(*_*') = - / G^{E)e-^E^^^dE, (3.15) 
flJ-oo 

1 /*+°° 
A<M)(k ; * - / ' ) = - / A ^ ( k ; ^ > " " i C ^ * ) ( ^ n ^ , (3.16) 

1 /•+« 

ft. 
(3.17) 

Using (3.12)-(3.17), Eq. (3.11) takes the form 

[£ -£ k ]G k <»>(£)= ( l /2ir)e(n)+A(»>(k;E) , (3.18) 

where Z£k is the elementary excitation energy obtained 
in the RPA [compare Eq. (3.11) of Ref. 21], i.e., 

£ k = £ o + 2 ^ ) / ( 0 , k ) . 

Here we have used the notation 

E f W - k = / ( k ) , 

J ( k ) - 7 ( k ' ) = / ( k , k ' ) -

(3.19) 

(3.20) 

(3.21) 

I t is clear that in a simple mass-operator type approxi­
mation, the correction A(n) will be of the form 

A<»>(k; E) -> Ek ( w ) (£ )G k ^>(£) , (3.22) 

where ]Ck(r°C£)> m general, would be complex and 
would not involve terms proportional to the inverse of 
Gk

( n )(E). Recently, Words5 has carried out a careful 
diagrammatic study of the structure of the Green-
function approximations in the context of thermo­
dynamic perturbation theory relevant to the low tem­
peratures. He observes that the Green function 
pertaining to the spin problems does not, in general, 
have the structure common to Green functions for nor­
mal particle systems and consequently, the mass 
operator—the generalized analog of Xk ( w ) (^ ) defined in 
(3.22)—has an anomalous structure unique to the spin 
systems. In fact, Wortis notes that whereas in the case 
of the normal particle systems the mass operator is a 
functional of the Green function G(n), for the spin 
systems an effective mass operator must be considered 
to be a functional also of the inverse of the Green 
function. [Compare argument leading to Eq. (5.5) of 
Ref. 5.] For the present purposes, it is convenient to 
extract the part proportional to the inverse of G k

( n )(£) 
from the generalized, effective-mass operator, i.e., 

A<~> (k; E) = Af k(E)Gk<»> (E)+D (n) (3.23) 

k 

Here D(n) is a function of the system temperature and 
of the variables n, k, and E, and Mt(E) is the*analog of 
the usual mass operator. In order to gain some insight 
into the form of D(n\ we Fourier transform (3.23) as 
follows 

A<">(g-1;*-/ ') 

1 r+oc 

Nfi J _ 

Xexp[*k- (g-l)-i(E/%)(t-t')'] 

XdE+DMd-ht-t'). (3.24) 

A convenient starting approximation for D (n )can now be 
arrived at if we refer to Eqs. (3.10) and (3.11). I t is 
reasonable to assume that because of the discontinuous 
nature of the Green function in the time variable 
(t-tf)~refer Eqs. (2.1)-(2.4)—A(?l) will also be a dis­
continuous function of (t—tf). The first term on the 
right-hand-side of Eq. (3.24) already incorporates this 
discontinuity because of the presence of the Green func-
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tion G(n). A delta-function dependence would, therefore, 
seem to suggest itself for the remaining term Z)(w) i.e., 

Z><»>(g-1; t-t') -*b(t-t')R{£-\)Q{n)y{T), (3.25) 

where y(T) is an arbitrary function of the temperature 
T} R(&— 1) is a suitable function of the vector g—1 and 
the temperature. Here Q(n) has been introduced for 
convenience in later calculations and is the same as in 
(3.6). Equations (3.25), (3.10), and (3.8a,b) contain the 
essentials of the form of the basic approximation of our 
theory. Introducing these into the equation of motion 
(3.5) and carrying out the Fourier transformations 
described in (3.12)-(3.17) we finally get 

[ £ - £ k - M k ( £ ) ] G ^ > ( £ ) 
= (l/2ir)Q(n)ll+y(T)R(k)2 (3.26) 

[compare Eq. (3.18)]. 
In view of the fact that the Fourier transform of the 

Green function, G^n)(E), has poles at E=Ek+Mk(E), 
we may recognize it to be the analog of the elementary 
excitations of the system (see Ref. 20 for a discussion of 
this point). I n general, Mk(E), which represents the 
shift of the true energy spectrum from that obtained in 
the RPA, will be complex. For the present purposes, 
however, the imaginary part of Mk(E) will be ignored. 
I t should be emphasized that strictly speaking the 
damping is a very important parameter of the system 
excitation. I t determines, in fact, the limits of the 
applicability of the concept of quasistationarity with 
regard to the elementary excitation. One cannot, there­
fore, claim with any certainty that the excitation Ek 

thus chosen represents the true elementary excitation of 
the system until it can be ascertained that the associated 
damping can be neglected. At low temperatures, the 
applicability of this concept is not in doubt because the 
associated damping4 is much smaller than £ k . Bearing 
in mind this conditional interpretation of jEk, we may 
proceed as follows: 

From Eqs. (3.26) and (2.6) and the identity that for 
real E and -Sk 

lim| \=-2Tri5(E-Ek), (3.27) 
^+0LE-Ek+ie E-Ek-ieJ 

we get the following expression for the static correlation 
function of C\{n) and S^\ 

Q(n) 
Z»(i_g) = ^ ( k ^ l + i ^ k M r ) ] ^ ^ " 1 ) , (3.28) 

N k 

where 

^ n ) a - « ) = <(5 i0 n 5r5 g +) , (3.29) 

* ( k ) = l / [ e x p G ? £ k ) - l ] , (3.30) 
and 

£ k = E k + i k f k ( £ k ) . (3.31) 

Considering the fact that 

Srs&=S(S+l)¥-fiSiz- (Si*)2, (3.32) 

when l = g , Eq. (3.31) contains both on the left- and 
right-hand sides a sum of averages of powers of Sz. We 
can therefore write down 25 independent, simultaneous 
linear equations in (Se), {(Sz)2), • • •, {(SZ)2S) by putting 
n in Eq. (3.28) equal to 1, 2, 3, • • •, IS consecutively. 
The equations with n>2S are not independent of the 
earlier ones because of the following operator relation 
satisfied by the spin operators 

r=+S 

I I (S*-rft) = 0, (3.33) 

where r takes on integral or half-odd-integral values 
according as S is integral or half-odd-integral. 

The results for the average (Sz) can be written as 
follows28: 

(^)=^[(5~$)(l + $)2W+(5+l+$)($)2S+1] 
/ [ ( l + $)2s+i_$2*fi] , (3.34) 

where 

$ = $ + 7 ( r ) = $ [ l + 7 , ( r ) ] ; $ = ( l / i \ 0 E k * ( k ) . (3.35) 

The expression for the average ((Sz)2) can also now be 
easily obtained from the relation (3.32). 

On proceeding from Eqs. (3.28) and (3.29) to Eqs. 
(3.34) and (3.35) we made the following choice for the 
function R (k): 

jR(k) = l / $ ( k ) . (3.36) 

The reasons for this choice become clear if we study the 
form of the transverse correlation function of the spins, 
£ ( 0 ) ( l - g ) - Putting n = 0 in (3.28) we get 

(Sz) 
=2fi—•x;$(kyk-(^1) 

N k 

(Sz) 
+2fi 7 ( r ) E *(k)12(kyk-<*- l>. (3.37) 

N k 

At low temperatures, where it has already been argued 
that Ejc of Eq. (3.31) will represent the true spin-wave 
dispersion law, the form of the correlation function 
Z/0)(l—g) i s known from the spin-wave theory. I t is 
known29 that for M g , this correlation function is, to a 
good approximation, given by the first term on the 
right-hand side of (3.37). Therefore, a convenient choice 
for R(k) is given in (3.36) because then the remaining 

28 Similar expressions were empirically arrived at by R. A. 
Tahir-Kheli, B. G. S. Doman, and D. ter Haar, Phys. Letters 4, 5 
(1963), Eqs. (22) and (23), after solving explicitly the 2S simul­
taneous equations for several different values of S. Callen (Ref. 23) 
has since derived these results by a much more elegant method. 

29 For example, Eqs. (2.2), (2.5), and (3.5) of Ref. 4 can be used 
to derive this result. 
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term in (3.37) contributes only when l=g, i.e., 

(Sz) 
fr-iZ,<o)(l_g) = 2 E$(fe)g*k-<«-« + 2<5*>7(r)5gli. 

N k (3.38) 

Having thus specified, up to an arbitrary tempera­
ture-dependent parameter y(T), the form of the func­
tion D(n) of Eq. (3.24) we investigate the function 
Mk(Ek). Once again we invoke a result known from the 
rigorous spin-wave theory that at low temperatures 

2fi2 

Ek-Ek=Mk(Ek) = —7(0,k) 
T«TC ]\T 

X E *(k')/(k')//(0) (3.39) 

ent from S. The function $, therefore, is small compared 
with unity and Eq. (3.34) can be expanded in powers of 
$ to give 

(S*)=titS-$+(2S+l)$2S+1 

- (2S+l)2$2S+2+0($)2*+3], (4.1) 

<(S.)2)=A2Qs*_ (25-1)$ + 2 $ 2 - (2S+1)&S+1 

+ (452-l)f2 's+2+0($)2 's+3]. (4.2) 

So far the arbitrary function y'(T) remains unspecified. 
It is clear from the definition of $ [see Eqs. (3.30) and 
(3.42) with a(T) = 1] and Eq. (3.35) that at low temper­
atures it is the strict analog of the thermodynamic 
average of the number of spin waves excited per lattice 
site. This requires 

[compare Eq. (3.7) of Ref. 4]. This suggests the 
following form for Mk(Ek): 

2fi2 

Mk(Ek) = a(T)—J(0,k)Z *(k ' ) / (k ' ) / / (0) , (3.40) 
N k' 

where a(T) is to be a temperature-dependent parameter 
such that in the limit of low temperatures <r(T) ap­
proaches unity. Equations (3.28)-(3.31), (3.34)-(3.35), 
and (3.40) constitute a set of coupled equations which 
must be solved self-consistently to determine the mag­
netization and the transverse correlation function. 

The formalism developed so far is valid irrespective 
of the lattice structure and the spatial dependence of the 
exchange integral I(g—f). In order to facilitate the 
comparison with the results of other theories we shall, 
in what follows, restrict consideration to lattices of 
cubic symmetry with nearest neighbor exchange inter­
action. 

J(g—f) = J if f and g are nearest neighbors, 
= 0 otherwise. (3.41) 

With these simplifying assumptions, the elementary 
excitation energies Ek, of Eqs. (3.31) and (3.40), take 
the following simple form: 

Ek=E0+2M(0,k) 

X 
a(T)fl 

(S')+ £*(k')/(k')//(0) 
N k' 

(3.42) 

4. THE LOW-TEMPERATURE REGION 

In this section we analyze the results appropriate to 
temperatures which are low compared to the Curie 
temperature. 

At these temperatures the magnetization is close to 
the saturation value and the average (Sz) is little diff er-

r«rc 

and, therefore, y'(T) is completely specified: 

y'(T) = y(T)/* = 
T«Tc .l+(2S+l)<$>-(2S+l)2&< 

(4.3) 

- ] • 
(4.4) 

As expected, yf(T) is small and decreases rapidly with 
the increase in S. In fact, y'(T) is significant only for 
S~l. Thus the simple mass operator approximation, 
which ignores y', is sufficient for large 5. 

The calculation of Ek involves an integration (or 
rather a summation) over the inverse lattice vector k'. 
The integrand, $(k /)/(k /), on the other hand, depends 
on the form of Ek. Therefore an iteration process has to 
be used. We first calculate (Sz), and the integral over k; 

in Eq. (3.42), in the RPA. The second iteration is ob­
tained by introducing these results into the expression 
for Ek and then recalculating (Sz) and the integral 
(l/i\0Lk' $(k /)/(k /). At low temperatures, this itera­
tion process converges very fast and it turns out that no 
further iteration is necessary beyond the first iteration 
cycle because the terms not included in the first cycle 
contribute in a higher order in the ratio (T/Tc) than the 
ones retained. 

The results for the spin-wave energies, Ek, and the 
magnetization M(T) are found to be as follows: 

Ek = E0+2Sfi2J(0,k) 
T«TC 

X [ l - (*•• v/S)Z5/20^~O(d^, (4.5) 

M(T) = M(0)(S*)/Sh 
- (M(0)/S)lS-aoe^-axe^ 

r«Tc 

~a2d
1l2-a^-0{d^)~], (4.6) 
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where 

0=l3kBT/J(0)W4>irvSr}, 

v=l for a simple cubic lattice 
= f (2)2/3 for a body-centered cubic lattice 
_ (2)1/3 for a face-centered cubic lattice 

a o = ^ 3 / 2 , 

Ql2=7r2C0^2Z7/2, 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

and 
co =33/32 for a simple cubic 

= 281/288 for a body-centered cubic 

— 15/16 for a face-centered cubic. (4.11) 

These results are the same as obtained by Dyson1 

(neglecting the small corrections arising from the 
second, and the higher Born approximation spin-wave 
scattering). The results for the average ((5*)2) are ob­
tained in a similar fashion and we get 

<(5*)2> = ft2[52- ( 2 5 - l){a06>3/2+ai6>5/2+a26>7/2+a36>4} 
+2{a0

2dz+2aoa1d*}-2S(2S+l) 
X {a{?

8+16*s+m+ (2S+l)ao2Sa16
dS+5/2} 

+O(0 9 / 2)] . (4.12) 

For the case 5—J, the right-hand side of Eq. (4.12) is 
exactly equal to jfi2. 

Combining Eqs. (3.38), (4.4)-(4.11), we can find the 
correlation function of the transverse components of 
spins appropriate to the low temperatures, 

fi(Sz) 
= E*(k)e*-<^»+HS'M?X.i- (4.13) 

T«Te ft k 

I t will be noticed that (4.13) is actually an improve­
ment on the spin-wave result in that for g—l, it also 
includes the term [last one on the right-hand side of 
(4.13)] which helps fulfill the stringent requirements of 
the spin kinematics. For example, for the simplest case 
5 = vjf, we have the exact equality 

(S0S0+) = W-HS'). (4.14) 

This equality is satisfied by (4.13) whereas the usual 
spin-wave result, comprising only the first term on the 
right-hand side of (4.13), does not satisfy it. 

5. THE HIGH-TEMPERATURE REGION 

In this section we consider the high-temperature ex­
pansions for the susceptibility and the magnetic specific 
heat. 

In the presence of a small magnetic field B, the 
magnetization, M(T), is small and is proportional to B. 
In the limit 22=0, the energy £k [see Eq. (3.42)] is, 
therefore, proportional to a(T)/B as long as a(T) does 
not go to zero faster than B2. I t is clear from the results 
of Refs. 18, 21, and 23 that the correct high-temperature 
behavior of the zero-field susceptibility x requires the 
proportionality of -fik to (Sz). Therefore, it is convenient 
to put 

a(T) = 2A(T){Sz)2/W, (5.1) 

where A (T) is a function of the temperature and is to be 
noninfinite, i.e., small compared with (1/B). The 
energies Ek, thus, are [see Eq. (3.42)] of the following 
form: 

J 5 k = £ 0 + 2 f t < 5 ' > / ( 0 , k ) [ l + X ( r ) ] , (5.2) 
where 

X(T) = [A (T)/fi2N^ £ L«» (k ' ) / (k ' ) / / ( 0 ) (5.3) 
k' 

and L(0)(k') is the Fourier transform of the transverse 
correlation function Z/0)(l— g) given in (3.38). As the 
self-exchange integral I(i— f) has been taken to be zero, 
the sum £ k ' J(k) vanishes and therefore (5.3) is inde­
pendent of any explicit dependence on y(T). 

In this temperature range the quantity $ is large 
compared with unity. Therefore, Eq. (3.34) can be 
expanded in inverse powers of $ to give 

< 5 * > = f t [ 5 ( 5 + l ) / 3 $ ] [ l - (2$)-! 

- (252+25-9)(30<£2)-1 ] , (5.4) 

5 ( 5 + 1 ) 
<(5*)2H»2 [ l + ( 4 5 2 + 4 5 - 3 ) 

3 
/ (30<l 2 )+O($)- 3 ] . (5.5) 

The zero-field susceptibility % is therefore given by 
the following: 

X = lim|><5'>/5ftJ3] = [ 2 M ( 5 + 1 ) / 3 M ] , (5.6) 
J5=0 

where we have assumed that a reasonable choice of yf 

will be such that 
yf(T)«B-K (5.7) 

The quantity (4>^-1) can be expanded in inverse 
powers of r where 

r-^pJityW. (5.8) 

Introducing the quantities to and h, 

/o=tanh(£E0 /2) (5.9) 

/ is tanh[<5 '>/(0,k)( l+-X:(r)) / f t r / (0)] , (5.10) 

and using Eq. (5.2), we can write Eq. (3.30) as follows 

* ( k ) = - - J + l [ l + W i / / Q + / i ] 

= - i + ( l / 2 / 0 ) [ l + ( l ^ / o 2 ) i : ( - l ) r ( ^ o ) r ] . ( S . l l ) 
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Expanding the hyperbolic tangent h and ignoring 
terms proportional to B in comparison with unity, we 
get 

1 
# = - E * ( k ) , 

N k 

= (—)t (-l)^WC(l+X(r))(^)Ar/o]% (5.12) 

where 

1 r / ( 0 , k ) - r 
F(r) = - Z — - . (5.13) 

iV k L 7(0) J 

Before discussing further the evaluation of <£, we recall 
that the RPA (represented here by putting X = 0 and 
7 = 0 ) yielded the correct high-temperature expansion 
for the susceptibility, up to, and including, terms pro­
portional to ( 1 / T 2 ) . Therefore, y must involve terms 
which decrease with temperature at least as fast as 1/r3. 

In order to determine the correct expressions for the 
two parameters A(T) and yf(T), we need also to con­
sider the correlation function Z/0)(l—g). A general ex­
pression for Z/0)(l— g) is not available but the system 
energy and the magnetic specific heat, for which exact 
expansions are known,8,9 depend sensitively on Z(0)(l—g). 
The computation of the magnetic energy requires 
knowledge of the correlation functions of the transverse 
as well as the longitudinal components of spins. In the 
paramagnetic region, spatial isotropy requires that, in 
the limit £ = 0, the longitudinal correlation be equal to 
the transverse one, i.e., 

(Si*Sg
z) = (SixSg*) = (SivSgy). (5.14) 

( T > r c ; B = 0 ) 

Thus the magnetic energy, (H), takes the following 
simple form : 

(H) = (-3/2)Y,W-n)(St+Sm-)=NS. (5.15a) 
<T^r c ;B=0) f,m 

Combining Eqs. (3.38) and (5.2) we get the average 
magnetic energy per ion §, 

S = [ - 3 < 5 ' ) f t / ^ ] E * ( k ) ^ ( k ) « (5-1 5 b) 
(T^Tc;B=0) k 

Thus the magnetic energy is explicitly independent of 
the parameter y'(T) and depends only on the parameter 
A(T) tor X(T)J 

The procedure for the determination of A{T) and 
y'(T) is now clear. We choose A(T) first to achieve 
agreement of Eq. (5.15b) with the result of the known 
high-temperature expansion for the magnetic energy. 
yf(T) is to be chosen next by fitting the susceptibility 
expansion of Eqs. (5.6) and (5.12) with the exact one. 

Using Eq. (5.11), Eq. (5.15b) can be expanded in 

inverse powers of r to give 

S = (3/2)3/(0)* £ ( - 1 ) ' 
r=l 

X [ 5 ( l + X ) / f t r ] [ F ( r + l ) - F ( f ) ] , (5.16) 
where 

S=lim[<5*>/fo],- (5.17) 

and F(r) is as in (5.13). 
The sums F(r) depend only on the crystal structure 

and can be calculated easily for r>0. (See Appendix A.) 
The quantity S is proportional to the zero-field sus­
ceptibility for which the exact expansion is known. 

After a little algebra one can now determine the high-
temperature expansion for X(T) such that agreement 
between Eq. (5.15b) and the exact expansion for the 
magnetic energy is obtained. Below we give the results 
for the two leading terms in the expansions for X(T) and 
the related quantity A(T) [cf., Eqs. (5.1) and (5.3)]: 

X( r ) = X 1 / r + X 2 / r 2 + - - . , (5.18) 

where 

X1=(-l/2z)J (5.19a) 

Z 2 = (8/45s2)S2(S+1)2- $S(S+1) 
+ (4/15s2), (5.19b) 

(103)£=29.630 fee; 52.778 bec; 69.136 sc, (5.19c) 

and where z denotes the number of nearest neighbors. 
Similarly, we have 

A(T) = A0+A1/T+---9 (5.20) 

Ao=-9/8S2(S+l)2, (5.21a) 

A1=(2/5z)-^/S(S+l)) 

+ [3/80zS2(S ,+ l ) 2 ] , (5.21b) 

f =2.05, fee; 2.45, bec; 2.43, sc. (5.21c) 

These expansions are sufficient to achieve agreement for 
the magnetic specific heat calculated from (5.15) to the 
order (1/r)4 . 

The susceptibility expansion £see Eqs. (5.6) and 
(5.12)] can now be similarly derived by using the above 
results for X(T). An interesting fact observed is that 
agreement of the leading three terms in the 1/r ex­
pansion for % is obtained without any assistance from 
the parameter y'(T). The fourth term is in agreement 
with the exact results only for large values of S. 

This, once again, demonstrates that the simple mass-
operator type approximation, 7 / = 0, is sufficient to 
describe the behavior of spin Green functions in the 
limit of large spins. For general 5, the y'(T) necessary 
to achieve agreement, for the susceptibility up to and 
including the term proportional to (1/r)4 , are as follows: 

- 1 0 3 [ r y S 2 C S + l ) 2 ] 7 ' ( r ) 

- 14.4, fee; 32.4, bec; 57.6, sc. (5.23) 
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As long as the exact results for the susceptibility and the 
magnetic specific heat are available for comparison, the 
foregoing procedure can be used to determine X(T) and 
y'(T), and thus, the dynamical spin-correlation func­
tions to any order in 1/r. 

6. TEMPERATURE CLOSE TO Tc 

Unlike the case of the very low or the very high 
temperatures, no rigorous expansions for thermodynamic 
functions exist for the range of intermediate tempera­
tures in the vicinity of the Curie point. I t is therefore 
difficult to construct a formalism which relies on the 
knowledge of these expansions for the determination of 
the arbitrary constants <r(T) and y(T). 

A number of results are, however, known for the 
transition temperature itself. For instance, the high-
temperature series extrapolation techniques8,9 provide 
fairly accurate estimates for the Curie temperature, Tc, 
as a function of the exchange integral, / . Similarly, the 
magnetic energy at the critical point, (H)c, can also be 
estimated by these methods. I t turns out that these 
estimates can be used to get information about the 
functions a(T) and y(T) in this temperature range. 
This investigation forms the contents of the present 
section. 

In the absence of applied magnetic field, i.e., B = 0, 
the magnetization M(T), and therefore (Sz), is small and 
$ (being, under these conditions, proportional to the 
inverse of (Sz)) is large. Equation (3.34) can, therefore, 
again be expanded in inverse powers of $. The most 
convenient expansion, it turns out, is the following 
[compare Eqs. (5.4) and (5.5)]: 

{Sz)=ft-
2S{S+\) 

where 

3 [ 2 $ + l + ( C 1 / $ ) - ( C 1 / 2 $ 2 ) + ( C 2 / 5 3 ) + - • • ] 

(6.1) 

C i = [ 2 S ( £ + l ) - 3 / 2 ] / 1 5 , (6.2) 

- 1 2 S 4 - 245 , 3 +1265 2 +1385- 96.75" 
C2 

3150 •]• 
(6.3) 

The energies Ek can once again be written in the form 
(5.2). However, the parameters A (T) and X(T), defined 
in Eqs. (5.1) and (5.3), will, in general, have different 
temperature dependence from that determined in the 
previous section. The appropriate expansion for Eq. 
(3.30) is now the following [cf., (5.11)]: 

$=y(T)-i+KF(-i)/y+b 
- y 3 F ( 3 ) / 4 5 + 0 ( y 5 ) ] , (6.4) 

where 
y=(S')ll+X(T)yftr. (6.5) 

Combining Eqs. (6.1)-(6.5), we get 

2S(S+l)h F(-l)hr -i 
2 r ( J ) 

1+X(T)~\ 
= (S-Y 

1+X(T) 

•1+X(T) 
-2Ci- \+0(S')*, (6.6) 

L Mr F(-l)hrJ 

where we have used the notation: 

T(T) = (Sz)y(T). (6.7) 

The summation F(— 1) [see Eq. (5.13)] is well known30 

and has the following values: 

F ( - l ) = 1.34466, fee; 1.39320, bec; 1.51638, sc. (6.8) 

The Curie temperature, Tc, is obtained by requiring 
that (since B=0) (Sz) —»0 as T approaches Tc from 
below. Thus (6.6) gives 

[ l + X ( r c ) ] 2 S ( S + l ) r 

3 F ( - 1 ) 
1 - 3 -

r(rc) n 
hS(S+l). 

(6.9) 

We find, empirically, that an extremely good fit of the 
results following from (6.9) with those known from 
Refs. 8 and 9 can be obtained (refer to Tables I - I I I ) if 
we have 

[i+A-(r.)3 l -
ST(TC) -| 

F ( - l ) - l j 5 - l -

L F(-l) JL 35 J 
(6.10) 

TABLE I. The face-centered cubic lattice.*1 

(kBTc/I^RuskbTooke and Wood (ksTe/I-h2) ours 

4.08 
11.90 
22.95 
37.23 
54.73 
75.46 

(kBTe/IW) 

4.46 
11.90 
22.31 
35.70 
52.06 
71.39 

RPA (kBTc/M
2)callen 

5.6 
13.9 
25.5 
40.3 
58.3 
81.3 

{kBTc/Ifl^-Domh and Sykes 

4.15 
12.0 
23.0 
37.25 
54.8 
75.4 

4.07 
12.0 

Urn 3kBTc/2J(0)S(S +1) =0.788, Rushbrooke and Wood. =0.807, (ours and Callen's). =0.798, Domb and Sykes. =0.744, RPA. 

30 G. N. Watson, Quart. J. Math. 10, 266 (1939). 
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TABLE II. The body-centered cubic lattice.a 

s 
1 
2 
1 
3 
2 
2 
5 
2 
3 

(kBTc/IJi2) Rushbrooke and Wood (kBTc/Iit
2) ours 

2.60 
7.55 

14.7 
23.9 
35.2 
48.5 

2.60 
7.66 

14.81 
24.05 
35.39 
48.82 

(kBTc/Iil
2)nVA 

2.87 
7.66 

14.36 
22.97 
33.50 
45.94 

(kBTc/rk2) Callen 

3.7 
9.1 

16.6 
26.2 
37.9 
51.7 

* Um3kBTc/2J(fl)S(S+l) =0.752, Rushbrooke and Wood. =0.785, (ours and Callen's). =0.718, RPA. 

Equation (6.10) contains two constants, X(Te) and 
T ( r c ) . In order to specify these completely, we also need 
the expression for the critical value of the magnetic 
energy, (H)T=TC> Using Eqs. (5.15a,b), expanding <$>(&) 
in powers of (Sz) (cf., Eq. (5.16)], and proceeding to the 
limit (S*) = 0, we get 

Sc <A>r-

kBTc N(kBTe) A+X(TC). 
(6.11) 

If the results for (Sc/kBTc) were available for all values 
of S and z, Eqs. (6.10) and (6.11) would determine 
X(TC) and T(TC). This, however, is not the case. 

I t is convenient, at this point, to establish a corre­
spondence between the present work and that of Ref. 23. 
Callen achieves a mass-operator type solution which, in 
our notation, is equivalent to putting (at all tempera­
tures) : 

A(T) > (1/25'2); y(T) >0. (6.12) 
Callen Callen 

At low temperatures, our results were obtained by 
choosing A(T)= (1/2S2) [cf. Eqs. (3.40) and (5.1)] and 
y(T)«: (T/Tcy

s+\ Encouraged by this correspondence 
we postulate 

A(T) = [1/2S2] . . (6.13) 
r n o t » r c 

However, unlike Callen, we retain the anomalous con­
tribution of the mass operator, y(T). Inserting Eq. (5.1) 
into (5.3) and putting T= TCy we now get 

x(rc)[i+x(rc)]/r£= (i/2?)CF(-i)-i]. (6.14) 

The quantity {Sc/kBTc) can easily be calculated from 
Eqs. (6.11) and (6.14) and the results are listed in 
Tables IV-VI. We notice that these results are in good 
agreement with those available from Ref. 9 and are a 
considerable improvement on those following from 
the RPA. 

The parameter T(TC) is now completely determined 
and may easily be obtained with the use of equation 
(6.10) and X(Te) given in Tables IV-VI. 

We shall consider next the behavior of the parallel 
susceptibility at temperatures just beyond the Curie 
point. I t is convenient here to recast Eq. (6.1) into the 
following form: 

fiS(S+l) <S'> 

3<S'> 

Let us put 

5*5(5+1) 

X [ 5 ( 5 + l ) - f ] + 0 < 5 ^ . (6.15) 

<5*> = x ' £ 0 , (6.16) 

where x' is proportional to the zero-field susceptibility x : 

X ' = ( 5 2 V M 2 ) X - (6.17) 

Introducing (6.17) into (6.15), expanding $, and 
proceeding to the limit £ o = 0 , we get 

2 

kBT\ 

•fiS(S+l) 
• r ( D 

l l 

=-£ . 
N k ( l / 2 X ' ) + * / ( 0 , k ) [ l + Z ( r ) ] 

(6.18) 

TABLE III. The simple cubic lattice." 

{kBTJIh2) Rushbrooke t kBTc/m)Q (kBTc/l¥)nFA {UBTC/IW) Callen 

2.7 
6.5 

11.8 
18.5 
26.8 
36.4 

1.7 
5.25 

10.2 
16.65 
24.75 
33.9 

1.75 
5.28 

10.27 
16.73 
24.65 
34.04 

1.98 
5.28 
9.89 

15.83 
23.08 
31.65 

i Um3kBTc/2J(0)S(S-{-l) =0.716, Rushbrooke and Wood. =0.734, (ours and Callen's). =0.659, RPA. 
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Equations (6.9) and (6.10), which define the Curie 
temperature Tc can be rewritten as follows: 

" • 5 ( 5 + 1 ) -l 

* —r(r,)J kBT, 

h[l+X(Tc)-] N k J(0,k) 
(6.19) 

Subtracting (6.18) from (6.19) and carrying out the 
summations over k (see Appendix B) we find that just 
beyond Tc the susceptibility x has the following form: 

( 3 5 ( 5 + 1 ) I - 2 

X=A Cse-/5)+ Dsr(D-/9j(r.)] 

where 

A = 
9/x2 

(6.20) 

(6.21) 
\a*J ^ 3 / 3 [ l + X ( r c ) ] 3 X l 2 8 7 r 2 ^ 4 5 4 ( ^ + l ) 2 

If we follow the RPA and the Callen assumption and 

TABLE IV. The face-centered lattice. ( - &c/kBTc)R1>A = 0.517, 
for all S. 

s 
1 
2 

1 
i 
2 
5 
2 
3 
oo 

(— &c/kBTc) o u r s 

0.433 
0.450 
0.458 
0.463 
0.465 
0.467 
0.476 

Domb 

0.439 
0.449 

0.474 

and Sykes X{TC) 

0.195 
0.150 
0.130 
0.116 
0.113 
0.108 
0.085 

put r ( r ) = 0, or alternatively, if we make the ap­
proximation that in the vicinity of Tc, T(T) is equal to 
r ( r c ) , we find that (6.20) leads to the following: 

X = A(/3c-/3)~2. 
(RPA; Callen) 

(6.22) 

This result is similar to that of the spherical model31 and 
was earlier obtained for the spin-f case by Englert24 and 
by Kawasaki and Mori.32 Within the above approxima­
tion we can also find the magnetization just below the 
Curie temperature from Eq. (6.6): 

<5*)2 = P(l-T/Tc)+o(l-T/Tc)
2, (6.23) 

(RPA; Callen) 
where 

rtrcF(-l)fr 3 -| 
P=\ (6.24) 

Li+x(rc)JLF(-i)+6c1J 

(compare Ref. 21). 
31 M. Lax, Phys. Rev. 97, 629 (1955); A. Lcvitas and M. Lax, 

ibid. 110, 1016 (1958). 
32 K. Kawasaki and H. Mori, Progr. Theoret. Phys. (Kyoto) 28, 

690 (1962). 

TABLE V. The body-centered cubic lattice. 
( - &c/kBTc) RPA=0.590, for all S. 

( - &e/kBTe) X(TC) 

0.487 
0.508 
0.517 
0.522 
0.525 
0.528 
0.539 

0.211 
0.160 
0.141 
0.130 
0.123 
0.118 
0.094 

The above result is similar in form to that of the 
molecular-field approximation (MFA) 

5 2 (S+1) 2 

(S*Y = (5/3) 
MFA (52+5+1/2) 

x(i~r/@c)+o(i-r/@c)
2, (6.25) 

where @c is the Curie temperature in the MFA. 
Recently, Domb and Sykes9 have reported, after a 

painstaking examination of the systematics of the 
extrapolation of high-temperature series, that just 
beyond Tc the zero-field susceptibility, x, obeys a rela­
tion of the form 

X = A(0a-0)-*i*, (6.26) 
(Domb and Sykes) 

where A is a constant independent of the temperature. 
I t is therefore clear that the approximation T (T) = T (Tc), 
which led to the result (6.22), is unsatisfactory. In order 
to secure agreement of our result of Eq. (6.20) and the 
above result, (6.26), the function T(T), in the immediate 
vicinity of TC) has to satisfy the following relation: 

3 5 ( 5 + 1 ) i2 

<fit-p)+ rjsr(D-j8er(re)] 
fi 

= [e+C 2 03- f t ) 4 ] 1 / 3 . 

which is equivalent to putting 

fi 

(6.27a) 

r(D=r(r.)- 35(5+1)0 
[H-CGS-fr)4) 1/6 

+0(fic-p), (6.27b) 

TABLE VI. The simple cubic lattice. ( - 8c//&jsr,.)BPA=0.775. 

( - £,e/kBTc) X{TC) 
1 
2 
1 
3 
2 

2 
5 
2 
3 
00 

0.626 
0.651 
0.664 
0.671 
0.674 
0.678 
0.695 

0.237 
0.190 
0.167 
0.155 
0.149 
0.142 
0.114 
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where C is a constant independent of the temperature 
and where e tends to zero. 

Having thus inferred the form of T(T) close to Tc, we 
utilize it in the determination of the magnetization just 
below the Curie temperature. Inserting Eq. (6.27b) into 
(6.6), we get 

< s « > * = — - — i — L — - — K — ± l . (6.28) 
[ l + X ( r ) j F ( - l ) + 6 C i ] 

Using Eqs. (3.35), (3.38), (5.3), (6.4), and (6.13), X(T) 
can easily be expanded in powers of {S*} and we get 

x(r)[i+x(r)] 

= (r/252) { F ( - l ) - l } -
(s*¥{i+x(T)y 

(6.29) 

(compare Eq. 6.14), and, therefore, 

<5*)2[i+x(r)]2 

X(T)) = X(TC-
UWz(l+2(rc/S%F(-l)~l^r2 

+0(l-T/Tc). (6.30) 

Thus to the leading power in the difference (1 — T/TC) 
we may replace X(T) by X(TC) in (6.28). Equation 
(6.28) now easily leads to the result 

{S*) = K(p-fic)m+o(p-pe)»i' (6.31) 

where K is to be a real quantity and is related to the 
constant C of Eq. (6.27b). 
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APPENDIX A 

The inverse lattice sums in Eq. (5.13) have to be re­
stricted to the first Brillouin zone. I t is convenient 
therefore to transform the function J(0,k)/J(0) to a 

TABLE VII. The sums F(r) for cubic lattices. 

Fir) 
M 
1 
2 
3 
4 
5 
6 
7 
8 
9 

fee 
1.000 000 
1.083 333 
1.222 222 
1.414 931 
1.668 403 
1.995 049 
2.412 423 
2.943 934 
3.620 184 

bec 
1.000 000 
1.125 000 
1.375 000 
1.802 734 
2.513 672 
3.696 533 
5.684 326 
9.066 343 
14.892 007 

sc 
1.000 000 
1.166 667 
1.500 000 
2.069 444 
3.013 889 
4.581 533 
7.209 619 
11.670 664 
19.338 445 

system of coordinates such that the integration limits 
are simplified (the boundary of the Brillouin zone in the 
cases of bec and fee lattices is somewhat complicated 
being, respectively, similar in structure to fee and bec 
lattices). This is done by choosing the coordinate axes in 
the direction of the basis vectors of the reciprocal 
lattice space, (for the basis vectors see Ref. 33). I t 
turns out that 

/ (0,k)/J (0) = | [ 3 — cos&i— cos£2— cos&3] 
sc 

= i[4— cos&i—cos&2—cos&3 
bec 

— C0S(&i+&2+&3)] 

— i[6—cos&i— cos&2—C0S&3— cos (ki—k2) 
fee 

— cos (&2—h) ~cos (£3—£4)], (Al) 

where, since the Jacobian is unity for the above trans­
formation, we use the following prescription for changing 
sums into integrals 

-Z(-
N k 

• ) - -> • 

8TT8 

+ 7T 

dk1dk2dkd('"). (A2) 

The sums F(r) of Eq. (5.13) are now elementary. The 
results for the first several cases are given in Table VII. 

APPENDIX B 

In the vicinity of Tc, the difference between X(T) and 
X(TC) is of the order (S*)2 [see Eq. (6.30)]. Therefore, 
subtracting Eq. (6.20) from Eq. (6.21), we get for 
temperatures just above the Curie temperature 

Z2fiS(S+l)/3j (Pc-py 
3 5 ( 5 + 1 ) 

x{(r(r)/r)-(r(re)/rc)}l 

2XV[1+X{TC)J 

x-E 
1 

(Bl) 

where 
N k [ 7 + / ( 0 , k ) ] / ( 0 , k ) 

F = l / 2 X / [ 1 + X ( r ) > . (B2) 

The inverse lattice summation in (Bl) can be ap­
proximately performed as follows. As the susceptibility 
X is large, V¥ is small compared with unity. The 
dominant contribution to the summation therefore 
comes from small values of k. As a rough approximation 
we may therefore extend the integration limits to the 
whole of the k space and also use the long-wavelength 

33 F. Seitz, Modem Theory of Solids (McGraw-Hill Book 
Company, Inc., New York, 1940). 
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approximation for J(0,k), i.e., 

J(0,k) = I(k2a2)+O(kaY, 

where v is the volume per ion (v=a?y sc; §#3, bcc; \a?, 
, . fee). Therefore, Eqs. (Bl) and (6.20) give 

where the nearest neighbor distance has been taken to r 
be [6(a2/;s)]1/2 (z is the coordination number). In this X = 

manner we have *-

1 

N k [ F + / ( 0 : 

^ / (B4) 
,k)]J(0,k) \27r2/a3/io F+/k 2 

9M
2 (v/a?)2 

lM(l+X(Tc))JXl28ir2fi^(S+l) J 
X 

r 35(5+1) -r-» 
I 08.-/5)+ {t3T(T)-pcr(Tc)} \ . (B5) 
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Ranges of 5- to 27-keV Deuterons in Aluminum, Copper, and Gold* 

R. L. HINES 

Northwestern University, Evanston, Illinois 
(Received 7 June 1963) 

A method of measuring ranges is presented which uses the change in optical-reflection coefficient of quartz 
due to radiation damage by the deuterons as a means of detecting the deuterons. The metal films are de­
posited on the quartz by vacuum evaporation and their thickness is determined with an accuracy of =b5% 
by weighing. By bombarding a given metal film on quartz at a fixed flux and a number of different energies, 
a number of bombarded areas are formed where the deuterons have penetrated to a corresponding number 
of different depths in the quartz. After chemically removing the metal film, the optical-reflection coefficients 
of the bombarded areas are measured and compared with theoretical predictions to determine the bombard­
ing energy for which exactly one-half of the incident deuterons have penetrated the metal films. The ranges 
obtained agree with theoretical estimates and are consistent with known ranges of protons in aluminum. 

INTRODUCTION 

AT energies in the keV region, the ranges of ions in 
materials are due to a combination of many com­

plex phenomena and can be predicted theoretically in 
only an approximate manner. The ions may lose energy 
by excitation of electrons in the material or by displace­
ment of atoms of the material. Furthermore, the in­
cident atom may undergo a number of collisions in 
which it is deflected through large angles. In this case 
the incident atom motion is more of a diffusion type 
motion and the concept of range must be broadened to 
include the concept of a mean penetration depth. These 
various factors have been discussed in extensive reviews 
by Bohr,1 by Seitz and Koehler,2 by Dienes and Vine­
yard,3 and, more briefly, by Nielsen,4 and by Lindhard 
and ScharfL5 All of the theoretical analyses are approxi­
mate because of the complex nature of the interaction 
between the atoms and their electron clouds. For the 

* Supported by the U. S. Atomic Energy Commission. 
1 N. Bohr, Kgl. Danske Videnskab. Selskab, Biol. Medd. 18, 8 

(1948). 
2 F. Seitz and J. S. Koehler, in Solid State Physics, edited by 

F. Seitz and D. Turnbull (Academic Press Inc., New York, 1956), 
Vol. 2. 

3 G. J. Dienes and G. H. Vineyard, Radiation Effects in Solids 
(Interscience Publishers, Inc., New York, 1957). 

4 K. O. Nielsen, Electromagnetically Enriched Isotopes and Mass 
Spectroscopy, edited by M. L. Smith (Academic Press Inc., New 
York, 1956), p. 68. 

e J. Lindhard and M. Scharff, Phys. Rev. 124, 128 (1961). 

ions of interest in this paper, the main energy-loss 
mechanism in metals is due to the excitation of only the 
conduction electrons. The incident atoms are moving 
too slowly to excite the more tightly bound electrons in 
the inner shells. 

Experimental determination of ranges in the keV-
energy region is hampered by the small depth of penetra­
tion (-^10~5 cm) and difficulties in detecting the ions. 
From previous work,6 it is known that low-energy ion 
bombardment of quartz alters the optical-reflection 
coefficient of the crystalline quartz. As a result, the 
quartz can be used as a detector of low-energy ions. A 
metal film of the desired thickness can easily be evapo­
rated in a vacuum onto the quartz. When the metal 
film-quartz combination is bombarded with a fixed flux 
of ions at a number of different energies, the ions which 
penetrate the metal film will change the reflection coeffi­
cient of the quartz. By chemically removing the metal 
film and measuring the reflection coefficients of the 
bombarded areas, it is possible to determine the range 
of the incident ions in the metal film. This paper presents 
experimental values of ranges of 5- to 27-keV deuterons 
in aluminum, copper, and gold as obtained by the above 
method, and compares the experimental values with 
theoretical predictions. 

Previously experimental work on ranges has been 

6 R. L. Hines and R. Arndt, Phys. Rev. 119, 623 (1960). 


